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We have solved the problem of the radiation from an isothermal sphere
with a spherical scattering indicatrix. We demonstrate that the emis-
sivity of the sphere and of the plane layer, with consideration of
scattering, can be approximately presented by a single function of

the product resulting from the multiplication of the attenuation factor
by the geometric characteristic of the radiating volume.

As is well known, the Schwarzschild-Schuster and
Eddington approximations for the problems of radia-
tive heat exchange are not sufficiently accurate. Below
we will employ the Bubnov-Galerkin method to examine
the problem of radiation from an isothermal sphere
with a spherical scattering indicatrix. To refine the
solution, we will use the method of iterations. We used
this method to calculate the radiative heat exchange in
a plane layer in [1]. The equation for radiation trans-
fer in the case under consideration [2] has the form
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with the boundary condition I(r,,n < 0) =0, which
indicates that the sphere is bounded by a vacuum or by
an absolutely black nonradiating surface. The attenua-
tion factor k and the scattering coefficient at a ratio
of the attenuation factor A will be held to be constant.
The dimensionless flow of energy at the boundary of
the sphere is expressed in the form
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where 7, is the product of the attenuation factor by the
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radius of the sphere. The source function of Eq. (1) is
written so that Q(TO) is equal to the emissivity.
Let us integrate Eq. (1) with respect to uin the
limits (—1,1). This yields
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From the symmetry of the problem, the boundary con-
dition for this equation is

Q(0) = 0. (4)

Solving Eq. (3) with boundary condition (4) formally,
we have
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If we introduce the function
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as is well known [2], for this function the following
integral equation is valid:
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Solving this equation by the Bubnov-Galerkin method,
assuming B = By = const, we have

B, =

where E is an integral-exponential function of n~th
order. A rather detailed table of these functions—to
the 3rd order—is found in references [3,7]. The most
detailed table for E; is found in [4]. Integral-expo-
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nential functions of higher orders can be found from
the familiar recurrence formula

REpa (x) = e~% — xE,, (1),



and from (1), (2), and (8) it is not difficult to find the
emissivity of the isothermal sphere

(9)
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where &(rg) is the emissivity of the nonscattering
sphere of optical thickness 7. As is well known [6],
for g, the following relationship holds:
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Formula (9) may be used only for small optical thick-
nesses 7y £ 1. It is the more exact, the smaller 7.

To refine the solution, let us use the method of itera-
tions. Having substituted By in place of B in the right-

hand member of Eq. (7). we find that
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It is not difficult to prove, using the recurreance for-
mula for En, that
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If 7,>(1/1 ~X), then By =2 — (A/(1 — A)7,)}. Conse-
quently, when A # 1, and 75—, we have

A
Q) =1-—- (14)

i.e., for the albedo of a semi-infinite medium we can
write the relationship

B()=2(1 —2) + —— B, {2t —, [Ea (t, — ) — R )
2t e (15)
—E5 (7 + O — [E3 (g — 1) — Ex (1, + 1)1} (11) To check on the aceuracy of formula (12), we com-
pare (15) in Table 1 with the results from the calcula-
It follows from (6) and (11) that tion of R carried out by V. V. Sobolev [5], as well
‘ as with the data found from the results of reference
) B, . [8]. To find R, from the data of [8] we used the for-
j ldp = TO{QF Tl (% — 1) = (% )l mula for the radiant flux incident on the wall of a plane
— , isothermal layer bounded by isotropically reflecting
—1Ea(ty — 1) = Ey(x + 7]} surfaces; this formula was derived in reference [9].
From (5) we find that Since (12) is the more exact, the smaller 1, we can
‘ ) expect from an analysis of Table 1 that the resulis
Q) = (1 — 1) [_4_ T — By () | (12) from the calcu_lation of the emissivity on the basis of
3 | formula (12) will be satisfactory when A € 0.7. If A >
> 0.7, the calculation can be satisfactory only if the
optical thicknesses are not too great.
Table 1 It was demonstrated in [6] by A. S. Nevskii that if
The Albedo of a Semi-infinite Medium we introduce the parameter v
, 4
A A:/E Reo z:icactzrc[i;r;g to the RT;()H: b= T ’ (16}
- referred to as the geometric characteristic of the
0.1 0,033 — " 0,024 radiating volume, for a nonscattering infinite cylinder,
8;§ 8:‘1)83 - g:g% sphere, or plane layer the emissivity is expressed,
0.4 0,133 0,11 0,114 in approximate terms, by a universal function of the
) g:g 8:;% 8:{3 8'}3% product K4. Table 2 shows the emissivity of a plane
8‘}’; 8.32-“; g%(z - layer and of a sphere with a spherical scattering indi~
0.9 0,300 0.48 —_ catrix as functions of the parameter Kéfor A. We used
Table 2

The Emissivity of an Isothermal Layer and of an Isothermal
Sphere as a Function of the Parameter K0 (the scattering

indicatrix is spherical)

A =02 [ A=05 ' h=0.8
K6 r ! | |
plane layer sphere i plane layer sphere i plane layer ! sphere

! ! | ! ; i
0.2 | 13 ) 155 ‘ 093 ? 094 ’ 038 | o
04 ¢ 27 | 20 ¢ 73 | 7T 075 | 07
0.6 3% | 380 | 243 [ 953 1o 12
0.8 427 1 455 | 305 36 1 142 . 145
1.0 492 . 524 | 359 e £ T R
1.2 548 1 580 | 408 425 202 209
1.4 596 i 630 ! 451 ! 468 229 ! 235
1,6 637 i 670 | 480 | 504 255 1 260
1.8 673 i 704 | 525 | 537 | 9279 | 284
2.0 706 0 73 5% | 52 ¢ 303 | 305
2.2 734 L 760 | 584 i 559 324 330
2;4 759 I 790 610 | 625 45, 3B
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the Ivon [1] method to calculate the emissivity for the
plane layer, and we calculated the emissivity of the
sphere from formula (12). We can conclude from
Table 2 that the emissivities of the sphere and.of the
plane layer, with consideration of scattering, can be
presented, in approximate terms, by a single function
of the product resulting from the multiplication of the
attenuation factor by the geometric characteristic of
the radiating volume. Since the shape of the infinite
¢cylinder occupies an intermediate position between the
shape of the plane layer and that of the sphere, it is
to be expected that the emissivity of the cylinder as

a function of K6 will occupy an intermediate position
between the emissivity of the sphere and that of the
plane layer.

NOTATION

Iis the intensity of radiation; u i the cosine angle
between the sphere radius and the radiation direction;
A is the scattering-to-attenuation ratio; K is the atten—
uation factor; r is the modulus of the radius vector
from the center of the sphere; 7; is the optical thick-
ness of the sphere; Q is the dimensionless energy flux;
£g is the emissivity of the nonscattering sphere; E; is
the integral power function of n-th order; R is the
albedo of semi-infinite medium; V is the volume of the
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medium; 0 is the geometric parameter of the radiating
volume; F is the surface area of the radiating volume.
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